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three cross-multiphcations show tha t  this is 
t o  

(Naumann)  

(Vom Rath)  

Then 
2 0 1 
i 1 o 
o o i 

P * - l i  0 

1 i 1 
$ 3 1 

I i  
u ~ =  i 

equivalent  

u(110) p ( l l 0 )  r(1$1) (i31) 

(110) (201) (i10) (001). 

= - 1 ,  P * =  

1 1 0 
~ 0. 1 
0 0 i 

Pa*= = -- 1, 

1 1 0 
i 1 0 
0 0 1 

1 1 0 
1 i 1 
i 3 1 

1 1 0 
1 1 0 
1 3 1 

- - _ !  

o I i ll 1 ( - 1 ) ( - 1 ) +  1 0 ( - ½ ) ( - 2 )  

I 1 ° I 0 + T o ( - 1 ) ( - 1 ) =  

In  the same way we find 

U A  = 5 1 W A  _~  2 ---~, VA= ---~, a, 

UB= --1, VB= -- I, W B = 2  , 

uc=-~, v c =  ~ - -  -~ , W C ~ -  ~ -~.  

The dependent  coefficients are, from (2), 

h~=_i, k~=0, 
h~=0, kB=-~, 
hc=-~, ko=-i, 

The t ransformat ion formulae 

H = - 5h - k - 2l, 

K = - 3 h -  3k + 61, 

L = h - k - 2 1 ,  

Vom R a t h  chose his axes 
N a u m a n n  symbolized 

[u~ v~ w~], 

[uBvBwB], 

[ucvcwc], 

l ~  1 
"~- 1 2 ,  

zB=¢~, 
1 

/C = 6" 

a r e  

U = - 2 u -  w, 

V = - 2 v + w ,  

W = 2u - 6v - 2w. 

along the edges, which 

[512], 

[112], 

[112]. 

I am great ly indebted to Dr  J .  Bouman  for his 
revision of the  manuscript .  
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Thermal Scattering of  X-rays by a Close-packed Hexagonal  Lattice 
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The dynamical properties of a crystal for small vibrations can be described by the set of coefficients 
of the potential energy forming the dynamical matrix. The elastic constants and many other 
observable quantities can be calculated in terms of the elements of the dynamical matrix, but, in 
general, the reverse does not hold. On the assumptions that  only central forces need to be considered, 
and that  only next-neighbour atoms act on one another, the dynamical matrix for a close-packed 
hexagonal lattice is expressed in terms of one atomic constant, which can be determined by com- 
paring the expressions for the elastic constants with experiment. The Fourier transform of the 
dynamical matrix and its reciprocal, which in first approximation is proportional to the scattering 
matrix, are then calculated. A diagram of the equidiffusion lines, which covers a part  of reciprocal 
space containing sixteen lattice points, is drawn. The diagram shows that  the 'extra  spots '  are 
surrounded by a weak background which exhibits considerable fine structure. The equidifftmion lines 
constructed for the vicinity of the selective reflexions (Jahn case) agree with those calculated by 
Begbie for beryl. :No trace is found of the intense star pattern observed by Lonsdale for ice and 
ammonium fluoride. 

In t roduct ion 

The general theory  of the thermal  scattering of X-rays  
has been given by several physicists. The most  impor tan t  

AC2 

publication is probably  t h a t  of Waller (1925). A con- 
densed presentat ion of this theory  appeared in Reports 
on Progress in Physics  (Born, 1942-3), which contains 
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a bibliography of this subject and an account of its 
development. The important contribution of the above 
report is tha t  the scattering power of a system is not 
expressed in terms of the frequencies of vibration, but 
is given directly in terms of the ' dynamical mat r ix '  of 
the system. In the particular case of crystals, where the 
normal modes of vibration have the form of waves, the 
scattering power is a function of the transformed 
dynamical matrix (in wave-vector space). From this it 
follows tha t  in order to investigate the scattering, one 
has to know the value of the transformed dynamical 
matrix for all wave vectors, or to use a model for which 
it may be calculated. 

Begbie & Born (1947) proposed a model in which the 
potential energy between the nuclei is assumed to be 
any arbitrary function of the displacements of the 
nuclei. All physical properties can be expressed in terms 
of this function and of its derivatives. In particular, the 
vibrational properties depend on the second derivatives, 
which form the dynamical matrix. For a given lattice, 
the dynamical matrix can be simplified by symmetry 
considerations. Begbie & Born.also assume that  the 
elements of the dynamical matrix are negligibly small 
except for next neighbours. In this case, the elements 
of the dynamical matrix can be expressed in terms 
of a small number of constants (the atomic constants). 

The application to a face-centred cubic lattice has 
been carried out by Begbie (1947). By considering the 
limiting case of long waves, it is possible to express the 
elastic constants in terms of the atomic constants (Born, 
1923). For the face-centred cubic lattice, it so happens 
that  the number of atomic constants is equal to the 
number of elastic constants. .Thus it follows that  the 
dynamical matrix and its transform in wave-vector 
space for all wave vectors, can be expressed in terms of 
the elastic constants. The final calculation of the 
scattering power shows tha t  a considerable intensity 
with a quite definite structure can be expected in the 
region between the Lane spots. 

This method fails when it is applied to the close- 
packed hexagonal lattic6, because, in this case, the 
number of atomic constants (seven) is greater than the 
number of elastic constants (five). In these circum- 
stances, Begbie limited his calculation to the regions in 
the neighbourhood of the reciprocal-lattice points-- the  
Jahn  approximation. Results are given for beryl. The 
purpose of the present investigation is to extend the 
work of Begbie into the regions of reciprocal space be- 
tween the lattice points, by the additional assumption 
of central forces. In  this particular case, the dynamical 
matrix and the matrix of the elastic constants become 
proportional to one atomic constant. In this paper, the 
scattering power of a close-packed hexagonal lattice is 
obtained as a function of this atomic constant, whose 
value can be obtained for a particular lattice, if its 
elastic constants are known. 

Born (1942) has shown that ,  even with the assump- 
tion of central forces acting only between first neigh- 

bours, the close-packed hexagonal lattice is stable. He 
has also derived the elastic constants. Beryl is the only 
hexagonal crystal for which the complete set of elastic 
constants is known, and in this case the ratio between 
the constants agrees quite well with tha t  obtained by 
Born. This suggests that  the assumption of central 
forces is a quite reasonable approximation. 

1. The expression for the thermal scattering 
" of X-rays 

This section summarizes briefly the results already 
obtained by Born (1942-3). The lattice cell is described 
by three elementary vectors al, a~, a s. Then the position 
vector of the particles at the vertex of a cell is 

r ~ = l t a 1 +/2a2 +/3a3, (1.1) 

where/1,/2, 13 are integers. I f  there are 8 particles in the 
unit cell, with masses m s (k = 1, 2 . . . .  ,8), and r~ is the 
position vector of the kth particle from the cell vertex, 
then 

• r(//c) = r~+rk (1-2) 

defines the position of the particle ( /k)in equilibrium. 

The rectangular components of r(/]c ) are x~ ( l k )  

(~ = 1, 2, 3). 
The potential energy (I) of the deformed lattice can 

be expanded in powers of the rectangular components 

1 where u is a small 1 (a=l 2, 3) of u k ' 

arbitrary displacement of the particle (/k) from equili- 

brium. The second-order term in the energy, (I)~, can be 
written 

~.= ~ ~ D~ ldc' (mkmk,)~ u~ k ~p l~' 
lk l'k" 

(a, ~ =  1, 2, 3). (1.3) 
/ l - l ' \  

The coefficients D~B [ kk' ~ are the elements of the 
\ / 

dynamical matrix. 
The elementary vectors of the reciprocal lattice 

bl, b2, b a are defined by the equations 

1 ff ~=/?  
a ~ . b ~ =  0 if c~4/?. (1-4) 

If  0 = Qtbl + Q2b2 + Qabs is a vector in reciprocal space, 

then Q.  r~ = Q111 + Q~ l~. + Q3 ls = (/, Q). 

The Fourier transform of the dynamical matrix, or its 
representation in reciprocal space Q, is a matrix which 
is diagonal with respect to the Q. The diagonal elements 
are given by 



N .  K .  

The quantities (1.5) are considered as elements of the 
matrix D(Q), the rows and columns being denoted by 
the pairs (a, k) and (,8, k'). 

Let it be assumed tha t  a beam of X-rays is passing 
through a crystal, and let k be the wave vector of the 
incident beam, and k'  be the wave vector of the scat- 
tered beam. Then, if the scattering power is defined as 
the ratio of the scattered intensity in any direction to 
the incident intensity, and i l k  - k '  = Q, it can be shown 
(Born, 1942-3) tha t  the scattering produced by the 
thermal motion is given by 

° ' = ( r ° N ~ S ~ ( k Q ' )  (1.6) 

where e~ kk' are the elements of a matrix, the 

scattering matrix, which in first approximation is pro- 
portional to the reciprocal of the transformed dynamical 

matrix S(Q) = kTD(Q) -~. (1.7) 

Here, k is Boltzmann's constants and T is the absolute 
temperature. 

The other symbols have the following meaning: 

w(k) = ~ e iQ" rkQ; (1.8) 

fk, the modified scattering factor dependent on T; 
N, the number of cells in the crystal; 

[ (e21~" ] 
~0, the Thomson factor =\-~-cc2r ] l ( l+cos~x)  ; 

e, the electronic charge; 
m, the mass of the electron; 
c, the velocity of light; 
r, the distance of the small scattering volume from 

the point of observation; 
X, the angle of deflexion of the X-ray beam. 

2. The dynamical matrix and its reciprocal 

In the work of Begbie & Born, all the elements of the 
dynamical matrix are assumed to be arbitrary con- 
stants, and then relations are found between them by 
applying the symmetry transformations of the lattice. 

In the case of central forces, the elements of the 
dynamical matrix are given explicitly in terms of the 
atomic constants, and hence already satisfy the neces- 
sary symmetry relations. The dynamics of a crystal 
lattice under the assumption of central forces has been 
completely worked out by Born (1923). Here it is 
assumed that  the potential energy between any two 

particles, 
\ - - /  /('){ particles and on r kk' , the distance between them. 

t The  fac t  t h a t  k is also used as a suffix is no t  l ikely to  cause 
confusion.  
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Accordingly, the elements of the dynamical matrix are 
determined by 

1 1 

() (') D 0 - ~ , '  (meme,)'~ D ~  kk' ' me ~P kk = zk" 

where the dash over the summation sign means the 

term ( : k )  is to be omitted, 

} , L r dr _1o 

d 

and [ ]0 means the values of the variables are to be taken 
at the equilibrium position. 

The conditions for equilibrium (Born, 1923), are 

lk" kk' X~ kk' = 0  (c¢----1,2, 3), ~ (2.3) 

) (a, f l = l ,  2, 3). 

Now, in the special case where only first neighbours are 
considered to act on one another, and all the particles 
are of the same kind, one obtains from the last equation 

2 1 

(cz = 1, 2, 3; g restricted to first neighbours). So it follows 

P[ l \ 

,~ for first neighbours, that ,  if p1 represents \kk ] 

t:'1=0, (2.5) 

and the elements of the dynamical matrix reduce to 

D~P(klk,)= -(mkmk,)-½ X,~(klk,)XP(klk,) Q(klk,) (2.6) 

(1 restricted to first neighbours). The value of the re- 
maining atomic constant, Q1 say, can be obtained by 
comparison with the matrix (C,.s) of the elastic constants 
(see (2.11)). Now the elements of the dynamical matrix 
can be written down as soon as the form of the lattice is 
known. 

In the close-packed hexagonal lattice there are two 
identical particles of mass m in the unit cell, distin- 
guished by k = 1, k =  2. The cell vectors al, a2, as can 
be chosen in such a way tha t  the angle between a I and 
a~ is ~Tr and a S is at right angles to the plane of a 1 and a2 
in the directi.on tha t  mal~es the system of axes right- 
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handed. The lengths of the lattice vectors are  g iven  and 0 '  in Figs. 1 and 2. Each point has twelve first 
by lax I--la  I--a, l aa (2.7) neighbours,  six in a plane containing the point, andthree 

above and three below this plane. The line joining 0 or O' 
The Cartesian co-ordinate system used is so orientated 
tha t  x~ lies along the positive direction of a s, and x~ 

°o° °, 

? 
Fig. 1. First neighbours of the two points in the unit cell 

of the close-packed hexagonal lattice. 

. . . . . . . . . . .  7 , ,  

; /~s 6-_-~, , , , ~ , ,.. 
• , \ ~ ; , , /  , , 

, ,  \ / 4 . "  V ,,, /,,,, / \ ! / \  ,,,,,,, 
¢.f._~-# ,, . # ~ x s ¢ ' _ ~  

" ~ "  ", i ~ " / ] ~ ' ~ t '  ;f , "  " , Y  -,., \'~/t~- -:/- - --V- --"~ ~~ ' / , , , '  

Xl 

/ 
a~ 

/ 
Fig. 2. Projection of the structure in Fig. 1 on to a piano 

perpendicular to the lattice vector a 3. 

along the positive direction of a 3 (Fig. 2). For simplicity, 
it is assumed tha t  the base vector of the particles of the 
type k =  1 is zero, while that  of the type k = 2 is given by 

_ _ ~ 1 l a  (2 .8 )  r ~ - r 2 1  - -  ~ a ~  + . 3 a 2  + 3 a, 

or, in rectangular co-ordinates, by 

r~l=(0,  -½a,  ½c). (2.9) 

Particles of the same type lie in alternate planes, per- 
pendicular to the a a axis. 

" I t i s °u lyneces sa ry t ° c °ns ide r  th°se mat r i cesD(  / )kk' 

which arise from the first neighbours of the two particles 
in a chosen unit cell. These two particles are labelled 0 

(') to a neighbouring point kk' is labelled by the letter p, 

andDpiswrittenforD( 1 ) kk' "The twelve neighbours of 

0 are again split into two groups p, ~, those of O' into 
p ' ,  ~' ,  as indicated by the following scheme: 

2, 3,'4, 5,'61 ~-~ 1, 2, 3, 4, 5, 6). neighbours of O, 

p ' ->  1', 2', 3', 4', 5', 6'} 
- ' - + i '  ~ neighbours of 0 ' .  
p , ~ ' ,  3 ' ,  ~ ' ,  ~ ' ,  ~ '  

The symbols p and the Cartesian co-ordinates X~ are 

connected to kk' asgiven in Tables 1 and 2. 

Table 1. Connexionbetween g~e symbols p and kk' 

(The notation is due to Begbie (1947).) 
p 1 2 3 4 5 6 
11 0 --1 1 0 --1 --1 
l~. 1 --1 0 0 0 --1 
1 s 0 0 0 --1 --1 --1 

(kk') (11) (11) (11) (21) (21) (21) 

p 1' 2 / 3' 4' 5' 6' 
11 0 1 -- 1 0 1 1 
l~. 1 0 -- 1 0 1 0 
l a 0 0 0 0 0 0 

(kk') (22) (22) (22)(12) (12) (12) 

0 --1 1 0 --1 --1 
--1 0 1 0 --1 0 

0 0 0 0 0 0 
(11) (11)(11) (21) (2l) (21) 

0 1 --1 0 1 1 
- - 1  1 0 0 0 1 

0 0 0 1 1 1 
(22) (22) (22) (12) (12) (12) 

The elements of the dynamical inatrix, given by 

D~p=- I  x~x~Q 1, (2.10) 

can be read off immediately from Table 2. They are 
given in Table 3. All the elements have to be multiplied 
by the fae.tor -a~Q1/m. 

\ / 

second equation of (4.1), are 

D o-- 0 - 4  . = D  °'. 

0 0 - 

The elastic constants of the close-packed hexagonal 
lattice have been considered by Born (1942) in an in- 
vestigation of the stability of such a lattice. The matr ix 
(crs) of the elastic constants (case of first neighbours only) 
can be written in the form 

29 11 8 0 0 i 
l l  29 8 0 0 

a4Q 1 8 8 32 0 0 

( c r ~ ) = - i ~ [ i  0 0 8 0  i ' 0 0  0 0 0 0  0 8 

(2-il)  
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Table 2. Connexion between the components of the distances between neighbours and kk' 

p 1 2 3 4 5 6 
a a a a 

X~ a 6 

X~ 0 ~/3 a ~/3 a a a a 
2 2 43 243 2,/3 

x~ o o o 
2 2 2 

(kk') (11) (ll) (II) (21) (21) (21) 

p 1' 2 '  3' 4" • 5' 6 '  
a a a a 

X~' a 0 

Xf 0 ,/3 a ~/3 a __a a a 
2 2 43 243  243 

x~ 6 0 0 
2 2 2 

(kk') (22) (22) (22) (12) (12) (12) 

i ~ ~d ~ B 
a a a a 

- - a  0 

0 ~/3a ~/3a _ - - a  a a 
2 2 43 2,/3 243 

C C C 6 o 0 ~ ~ 

(11) (11) (11) (21) (21) (21) 

i '  ~' ~' :~' 5' 6' 
a a a a 

- - a  ~ ~ 0 --~ 

0 ~/3a ~/3a a a a 
2 2 4---3 243 - ~  

O C 0 o o o ~ ~ 

(22) (22) (22) (12) (12) (12) 
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Table 3. 

1 0 6 - 
D 1 = 0 0 0 

0 0 0 _ 

[ - 1 ,/3 o 
4 

D 2 = ~/3 3 
- T  ~ o 

0 0 0 

D o = ~/3 3 
~- ~ 6 

0 0 0 [o o o] 
1 42 

D ' =  o g T 

0 42 2 

I 1 1 ~ 2 ] 1 1 
D~= 44---3 1-~ 

_ -  
46 6 

i l  4431 

DO= 4-~3 1-2 

, v2 
6 

Elements of the dynamical matrix 

= D ~', 

=1~' ,  

= D  ~', 

= ~ .  

= D  ~', 

= D ~', 

D~= 

D~-= 

D~= 

1 0 o ]  
0 0 = D x', 
0 0 0 

1 43 o ] 
T ] 3 -- D ~', 

o 

0 0 0 

1 43 o ] 
4 

~/3 3 J ----D o', 4 ~ 0 

0 0 0 

0 g =D4, ' 

o ,/2 
3 .a I I1 21 

i 443 j6  
1 1 

4~/3 1--2 = D a "  

~/6 6 

i ~43 

1 1 = DO, . 
443 12 

46 6 3 

where Voigt ' s  form for the elastic energy per uni t  
volume is 

0 2  ___ 1 '~  Cpo.XpXtr, (2.12) 
p~r 

and A is the volume of the uni t  cell. Thus Q1 can be 
obtained by a determinat ion of the elastic constants. 

The elements of the dynamica l  mat r ix  in the re- 
ciprocal-lattice space (which for a hexagonal  lattice is 
another  hexagonal  lattice) are obtained from the 

(') D~p kk' by means of (1.5). Before doing this, however, 

i t  is convenient to denote the co-ordinates of a wave 
vector Q in reciprocal space by  four symbols instead of 
three. This is done in order to utilize fully the symmet ry  
of the lattice and corresponds to the fact tha t  in a 
hexagonal  direct lattice there are three symmet ry  lines 
in the plane 13 = 0, any two of which m a y  be taken for the 
direction of the cell vectors. The co-ordinates of the 
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point Q are thus denoted by (Q1, Q2, Qa, Qa), where 
Qa denotes the new co-ordinate and the one previously 
called Q3 now becomes Q4. As a point is now specified 
by four co-ordinates instead of three, a relation must 
hold between them. This is given by 

QI + Q2-~ Qs=O. (2.13) 

The elements of.the matrix are thus given by 

( Q . r  ~= Qlll+ Q212+ Q413). (2.14) 

I t  is not necessary to calculate all the matrices, as it is 
easily seen that  

, D ( 1 Q 1 ) = D ( 2 : ) ,  D ( 2 Q 1 ) = D ( I : ) .  (2.15) 

in detail. The corresponding 1 values can be obtained 
from the upper half of Table 1. The resultant matrices 
are given by 

D(Q)=DIe-iQ~+D2e-iQs+D3e-iQ~ 1 
.-]. n T eiQ~ -}- D ~ eiQ1.4- D-~ eiQa + D°, | 

(2. 16) 

+ D-~ + DS e-iQs + D-e eiQ1. ) 
In this paper, as in Begbie's the calculation is con- 

fined to the plane Qa = 0. With this condition, the non- 
vanishing elements reduce to 

D n ( Q )  = a2Q1{2c~.+½(ci+c3)-4},-~ 

1)22 ~ '  ~'~ 

(Q) = ___a~Ql{?(Cl_Ca)}=_D~.l(Q), /)12 m 

D ( Q )  a2Q1 
~ 11 = - - - d  -{-4~'  

a~.Q 1 (2-17) 
Dn m [½(eiOx"l-e-iQa)}' 

(Q)= agQl{2~(eiQl_e-iQ3)}=D~.l(Q),-- D12 ¢7~ 

D33 -- ----~-- 

where % = cos Q~. (2.18) 

The matrix D(Q) is of order 6 × 6, corresponding to 
the six possible values of the pair of indices a, k. If  the 

rows and columns are so ordered that  the elements 

D [Q~ B[kk,] which occur in the fifth and sixth rows and 

columns have at least one of the indices a , / ? =  3, then 
the matrix can be written in the form 

E~11 Alq 
21 A22~" (2"19) 

Here the A~s are submatrices. A n consists of the sixteen 
elements for which ct and/? are equal to 1 or 2, A2~., the 
four elements for which both ct and/?  are equal to 3, 
and AI~ , A21 are composed of the remaining terms for 
which one of the indices a, /? is equal to 3. From 
(2.17) it follows that  the submatrices Axe. , A21 are zero 
matrices. 

Now, i f  the reciprocal matrix is partitioned in a 
corresponding manner, the submatrices being, denoted 
by Brs, it will have the same form as the original matrix, 
and the submatrices Bn, B2~. are the reciprocals of An,  
A~, respectively. A glance at the scattering formula, 
(1.6), shows that  the submatrix Bg~ always acts on the 
component Qs, or, as it is now called Q4- Since the 
calculation is confined to the plane Q4=0, this sub- 
matrix will contribute nothing to the scattering. Hence, 
in the sequel, the term-transposed dynamical matrix, 
D(Q), will be applied to the 4 × 4 submatrix An.  

The reciprocal of the 4 x 4 submatrix can be written 

D-I(Q) = - ~  

A11 --A21 A31 --A41 1 
-Ax2 A22 -Az2 A42[ 

A13 -A23 A33 -A43 | '  
--A14 524 --534 A44J 

(2.20) 

m 

a~.Q1A 

Where A is the determinant 

Dn(1Q ) '  Dle(1Q1)' D11(1Q) ' D19(1Q2) ' 

D~I(1Q1)' De~(1Q1)' D91(1Q) ' D22(1Q2) ' 
• Q ,  , Q ,  Q '  
Dn(21)  D12(Q) Dn(22)  D12(22) 

' ! 

Q '  Q 
and D~,e(kk, ) =D~p(kk,)/(-a~Qml).. (2.21) 

A~s are the minors of the elements in the rth row and the 
sth column. They satisfy the relations 

All = A33, A22 = A44, A12 ---- Ag¢34, A23 = A4~l, Ag-s = A~r. 

(2.22) 
Instead of working out the elements of the reciprocal 

matrix in detail, the calculation is simplified by taking 
certain linear combinations, which, being related to the 
symmetry of the lattice, simplify the expression of the 
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scattering power. This will be shown in detail in the 
next  section. The symbol 1~ before a quant i ty  means 

. tha t  the real part  of tha t  quant i ty  has to be taken. The 
required linear combinations are defined as follows 

A". = ½(3A n - A22), [ (2"23) 

A a = R(~/3A". 1 + A 2 2 ) , )  

t 3 ~X~=R(~zXl.-½A~) exp[i(Q~-Qa)/3],~ (2.~) 
A'a_ R(A~ + 43A".a) exp[i(Q~-Qa)/3]. J 

A somewhat lengthy calculation shows the values of 
these quantities, and of the determinant A, to be given 
by 

3 ~  = a17 - ~ + ~ + ~ -  4c~ .  + 3 (~  + ~a) - 8~1 + 8, 

3A a --- aa7 + c ~, + c ~- c~- 4c~ c~ + 3( c~ + c".) - 8c a + 8;J 

(2.25) 

3A~= - a~(a~ +a".) cos ~(Q~- Q1) +a".a a cos :~-(Qa- Q".) 

- a~(a~ + aa) cos ½(Q~ - Qa) + cos i(Q~ _ Q~) 
2 + cos i(Q~ _ Qa) + cos -d Q". - Q.), 

3A". = - -  a".(o~ 1 ÷ 32) cos  ½ ( Q 2 -  Q1) 

- a~(a2 +as)  cos ½(Qa- Q~) +a~aa cos ½(Q~- Qa) 

+ cos ½(Q3- Q".) + cos ½(Q2- Q1) + cos-~(Q3- Q1), 

3Aa= ala  2 cos g(Q".- Q I ) -  aa(a~. +aa) cos ½(Qa- Q~) 

- a . (~ ,  + aa) cos ~ ( Q ~ -  Q~) + cos 1 ( Q 1 _  Q,) 

+ cos ½(Qa- Q~) + cos ~(Q~ - Q~); 

(2.26) 

9A = 7 " -  2( ca + ca~ + ca a) -48c1 c2ca- 34(Cl ~ + c~ + c~) 

+ 46(c~ c". + c~c a + cac~) + 66(c~ + c~. + ca) - 189; 

(2.27) 
where 

31=2(C2+C3)--Cl--4, a~=2(ca+c~)--c~.--4, t 
a a = 2(cl + c".) -- Ca-- 4, (2.28) 

7 = 9(c~ c~ + c". C a + c a c1) -- 24(c~ + C~ + ca) + 48. ) 

3. The scattering power and isodiffusion lines 

Since all the atoms in the hexagonal lattice are of the 
same kind, the formula for the scattering power (1.6) 
reduces to 

D-~tQ]  , , o=oo NI~TIf I~ E E =z[kk'] exp [ - i O  .rkk,] Q,~Q/r. 
m ka k'fl 

(3.1) 

In  this equation, dashes are placed over the Q~, in 
order to show that  they are co-ordinates in the Cartesian 

t t system. I f  now the dashed co-ordinates of Q, (Q1, Q~., 
Q~) in the Cartesian system are replaced by the hexa- 
gonal system (Q1, Q2, Qa, Q4) referred to the basic 

vectors of the reciprocal lattice, by means of the trans- 
formation 

, Q , Q a -  Q1 QI= --~, Q2= (Q4=O), (3.2) ,/3~ a 

and use is made of 

the scattering power can be written in the form 

o'=~O'oNkT Ifl2 B'~Q2" (3.4) 

The coefficients B~ are given by 

t exp [ -  i(Q1 - Q~)/3]} = A~ + A~, 

B~ = R{I(3An - A2e ) + ½(3A33- A".41 

exp [ -  i (Q1-  Qa)/3]} = A2 + A[, 

Ba= R{a".~ + 43a~1 + (a".4 + 43A23) 
exp [ -  i ( Q i -  Qa)/3]} = Aa + A~,, 

(3.5) 
or, more dxplicitly, by  

3B 1 = a~ Y - c~ + c~ + ca 2 -  4c". c a + 3c~ + 3c a - 8c 1 + 8 

- -  a l ( a  1 ÷ 39.) C21 ÷ 3233c32 - -  al(~Z 1 ÷ a3) c13 ÷ c21 

÷ c13 ÷ c o s  ~3-(Q2 - Qa), 
3B~:a~ 7 ~ + c 1 -  c~+ ca 2 -  4cac a + 3c a + 3c a - 8c". + 8 

- -  a 2 ( a  2 ÷ 33) C32 ÷ aaalC13 - -  a".(a". ÷ a l )  C21 ÷ C3" . 

+ c~.~ + cos ~ ( Q a -  Q~), 

3B 3 = aa7 + c~ + c~-  c2a- 4c 1 c 2 + 3c 1 + 3c 2 -  8c a + 8 

- -  a 3 ( a  3 ÷ a l )  c13 ÷ a 1 a". c21 - -  a 3 ( a  3 ÷ a".) c32 ÷ c13 

+ ca". + cos §(Q1- Q".), 

Q~-Q,e 
cap = cos 3 

(3.6 

I f  the formula (3.1) for the scattering power is written 
in the form 

o'= o'oNkT ]f]~ d(O), (3.7) 
m 

where 

- ~ ( ~ )  d(Q)=~k~ ~ D ~  kk' e x p [ - i Q . r k ~ ]  O'~Q'fl, (3.8) 

the function d(Q) is known as the 'diffusion function'  
(Born, 1942-3) since it describes the diffusion of 
scattered intensity about a Laue spot, in virtue of the 
thermal motion. The so-called' surfaces of isodiffusion ', 
d(Q)=const . ,  give a graphical representation of the 
scattering. 

In the present case, the isodiffusion function is given 
from (3.4) by 

am B~Q~ (3.9) 
d(Q) = 3a-~Q1 ~ A 
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"The process of calculating this function can be con- symmetry considerations, they must be a general con- 
siderably reduced on account of various symmetry sequence of the close-packed arrangement, and not 
relations. In the first place, the determinant A and the of the particular assumption of central forces. Another 
three coefficients A~ are periodic in the Q~. Then it is feature of the close-packed arrangement is that the 
easily shown that replacing the point (Qz, Q~, Qs) by isodiffusion function itself, apart from the factors Q~, 
(~ Q2, - Q~,' - Qz) corresponds to a rotation of 60 ° in is periodic for displacements of three cells in the re- 
the plane Q4 = 0. A is invariant under such substitution ciprocal lattice. 
and the triad (Bz, B~, Bs) becomes (B2, B~, BI). Thus it It is rather difficult to see what features are general 
follows that d(Q) is invariant under 60 ° rotations in the consequences of the assumption of central forces. In the 
plane Q4-0, and so it is only necessary to evaluate it general case, the equation for an isodiffusion line will 
in one sext.ar~t. Further, replacing the point contain the seven atomic constants. By the assumption 

of central forces, these seven atomic constants can be 
( x -  ½y, y, - x -  ½y) by  ( -  x -  ½y, y, x -  ½y) expressed in terms of one independent  constant,  Q1. 

corresponds to a reflexion in the line Q2+2Qz=0.  ,46.2 
Inspection shows tha t  (B1, B~, B3) becomes (B3, B~, B1), 3s,,3s00m,~p, 
so tha t  d ( Q )  ~s invar iant  with respect to r6flexions in 342,~w,) (6,3 16.aO'.7o'-J Ion) sn 
the  six lines of the type Q~ + 2Qz = 0, and so it is only ' ~ ° ° , 4 ~ 4 £ _  

]]5 "481 | 853 ~bO_~ 842 
n e c e s s a r y  t o  o a l c u l a t e  i t  f o r  a s e c t o r  o f  3 0  0. 274 .274 ~ 4 8 0 ~ $ 3 ~ 1 1 3 8  , 

.2,0 .274 \ ,n\~--,( .3. ,  ~ ~ . ,  The isodiffusion function d ( Q )  is calculated from (3.9) 2,1 ~,1 n, \ , , ~ , /  .~ 
for a network of points lying in the plane Q4 = 0. They .2,s 24S ,341 ~ 6.2.4 ~ 483 400 

2,4 261~ 261 278 ,~.._.~418 ~ 4 0 S  586 
~ 3 7 4 ~ 0 2 9 5  214 ~(~ 277 317 ~ 483 ~"1~138 form a lattice which has unit vectors in the plane Q4=O 5 6 ~ 4 %  237- ~ ' ~  240 317\ { 963""~0,.,B42 

o f  magnitude o n e - s i x t h  o f  t h e  reciprocal-lattice v e c t o r s .  909 (-2.0) 909 385 1'3,~ " j  .213 -- 2 t $ 4 1 8  ~*,~(.3.2) t ~ \667 
" ' ~ ' ~  J .2', -, ,,q~o.2,o ~ ,.2~"~",:'1,~ ~,  ,,~ 

In  order to check the accuracy of the calculation, the 1_.~-34B~"~"~384 :174400 .270 ~176 2T/~ T/1~-'~ ~ 693 

points were taken in a sector of 60 °, so tha t  each value .,.27 193_ 45~'/~ ~75, "~  .2"/0 (189~ V 341~ 480 ~[ 107:l ~"S.~S67 
is evaluated twice. The results, which include the ,?,?.~.~. ., 0, ~! ,  ~L~fi '0~O~Tk .2,1) 1.214 317~.~0 481\,.,~.j34~146.2 

s ix teen  rec iproca l - la t t ice  po ints  (0, 0) ,  (0, 1), (-1, 0),  - ; J .2,4 .23, .24, .2. \ .  
. .  .1 /1o,  1 7 6 ~ . . ~ 4 s ?  ~1 2,s m ~3s \ 3 4 ~  

( - -  l ,  I ) ,  ( ~  1, 2 ) ,  ( - - 2 ,  0 ) ,  ( - - 2 ,  1) ,  ( - - 2 ,  2 ) ,  (0,  2 ) ,  (0,  3 ) ,  105 --105 11.2" -- -.-~:17"~'~'-- 354 ~ 3.23 ~ 5  ~-'~2@4 210 \660 ~ 1  
(--3, 0), ( - 1 ,  3), ( 3, 1), ( - 2 ,  3), ( - 3 ,  2), ( - 3 ,  3), ~a~' '1'.- 's ", 1 , , ~  m :~,.~u~$ .2,, ~7, -,o= . 

(-1.0)) ,'91 $4 ~11.2 1|~ .231,k~('2..2) kk 2'4 .274 742 " where the co-ordinates refer to the axes Qz, Q2, are ' L ~ ' "  $' 711 102 . . . . .  '107 '~34 h ~.~64) .24S ~480 ~00 $72. 
" . . - - . : s o  . . - - .  $$ ;11, i " "" 1.2,\, \ 8 ~ y ~ . / . $  ~./ 

shown in Fig. 3. The numbers  plotted are actual ly  the '1, 27 1;$ / 226. ', 81 1,107 ~ 384 237 341( /~1~7~3 ' ~  120 ~ B a Q~ 34 "]4-- 45"\ 91 105 81 ~ 2~1~/385 261 6.23 6.7 

iralues o f . - 4 - f i  ~ - - ~  and to get the true diffusion '4 '14 27 \ t17L~X'141'. ~: 191 251 214 1-,\--~,4~ 
,~ ~,'.., (-,,1~\ ,o~.. /11.2 . /  m '"P~oo ~7. t '(..2.~ 

f u n c t i o n ,  h a v e t o b e m u l t i p H e d b y t h e f a c t o r  4 ra  __4~r ~ ~ , $ ~ ,a ',,,1~-o~1,, . . . . . . . .  . '1~/ ~ $ ~ \  ~ . -  .2~ - ~ - \ ~ /  e 34,~ '1 ".112 / 3S48~ 4~$ 213 k418 586 
, ~ × 120' * , .1, ~,;$ ,.1 ",,,i/6.-sN \~ ,o  ~ , , o  \ . ,  

4 4 B 27 %. 55 7S~ i. 61~ / '~75t k 196 317 "~  400 
,where, of course, Qz is obtained from the elastic con- (o.o) s . ,s', 54 ".2'~t,. ~-~-~)1,_ ,,o~ ~1$ ,o~ 

4 4 8 ~ " - "  '5 7e / 611( "k-'J'~56 I 196 317 ~] 400 
s t a n t s  i n  t h e  m a n n e r  already described. 4 ' I, {S$ 71 ." 176 kkk,4109 J 270 240 / 4 8 3  

This factor will, natural ly ,  only change the scale of the . 1. ,~ '117~ .11, '14,\ 4 ~ f  ~11 2T// /W 96]~N~ 
isodiffusion lines, but  not their  form. The isodiffusion 14 /$S ~ ~6 '10.2 21¢1 274 ~ 1'24 /~N~138 

_ ~;, . , (o.1)~'  ,osJ_oom \ m .1~/" ,7,, ~J(-1.~) 
l i n e s  i n  Fig. 3 a r e  d r a w n  f r o m  t h e  n u m b e r s  plo t ted .  I x .  117 2 / 141/" 82~ 1,]. .251 ~14 ( 771 ~) t841 

From this chart  of the isodiffusion lines in the plane , ~ '1=: .f .2,1 ~ ~,,s ~6'1 I ,n,~"~..~,, 

Q~=0, it  is seen tha t  the most intense scattering is ~[ " ~  -107 /14B~/ / "  S(~4 "~) 245 /480 $72 

represented by  those areas which lie close to the points m l "~ ~]1 g / g ' ~ ( o . ~ f f ~ . 2 .  ~74] 74.2 

of the reciprocallatt ice.  These areas of intense scattering ~ 909--¢64J 215 274 / ~ ' ~ - -  
, ~ ~64 .210 ~660 "/~1341 are, of course, the so-called ' ex t ra  spots , which are ~ ~,.1 n$/~-e2~ \  

274 /1170~"~a/~ 35~,7 surrounded by  a weak background. Nevertheless, ~ - . . ~ / ~  • 

al though the  background is re la t ive ly  weak, i t  possesses ~ ' 1 ~  
a considerable amount  of fine structure.  The ' ex t ra  

Fig. 3. The isodiffusion lines of a close-packed hexagonal 
spots '  associated with the first ring of re.ciprocal-lattice lattice in the plane Q, = 0. 
points are almost isolated by  regions of very  low scatter- 
inglpower. However, there are ridges of higher scatter- Thus, the part icular  form of the isodiffusion lines wi th in  
ing power connecting the second ring of reciprocal- the general framework of the features discussed above, 
latt ice points, is a direct result of the assumption of central forces. 

Fur ther  general features of the chart  are tha t  it is The innermost  contour around each reciprocal-lattice 
invar ian t  for 60 ° rotations about  the origin, and for point  of the chart  approximates  very  closely to the 
reflexions in any  of the twelve lines joining the second isodiffusion lines obtained by  Begbie (1947), for the 
r ing of reciprocal-li~ttice points to the origin, Since it l imit ing case of the J a h n  approximation.  This is only 
can be shown tha t  these features follow from general to be expected, since Begbie used the elastic constants of 



N° K° 

beryl, which, as has been stated earlier, satisfy approxi- 
mately the conditions required for central forces. The 
general shape of the contours changes as one proceeds 
outwards from a reciprocal-lattice point. 

There are no signs of the very strong streaks con- 
necting the Laue spots, which have been reported by 
Lonsdale (1946) for the case of ice and ammonium 
fluoride. This would suggest that  the origin of these 
streaks (Born, 1946) is not due to the ordinary thermal 
motion, but to the existence, in these crystals, of atoms, 
which have two possible positions of equilibrium. In 
the case of ice, the hydrogen atoms are assumed to lie 
on a line joining two oxygen atoms. The equilibrium 
position of the hydrogen atom is not at the midpoint of 
this line, but nearer to either one or the other of the 
oxygen atoms. A survey of the evidence for this is given 
in a paper by Penny (1947). A statistical distribution of 
the hydrogen atoms over these two positions would, as 
Born has shown, give rise to a continuous distribution 
of scattering power in reciprocal space. 

I t  is to be noted that  the chart cannot be extended 
indefinitely in Q-space, for the general formula (1.6), for 
the scattering power, is valid only for points of Q-space 
which are not too far from the origin. This distance 
depends on the temperature. A full discussion of the 
validity of the general theory is given in the report by 
Born (1942-3). 

Finally it should be remembered that  the calculation 
has been made using a model in which only the forces 
between next neighbours are considered. The neglect of 
long-range forces will be of little influence for long waves 

P O P E  333 

(corresponding Q-vectors will lie near a reciprocal- 
lattice point), but will be very essential for waves of the 
same order of length as the lattice constant. Thus, in the 
case of an ionic lattice, where long-range forces are 
important, the value obtained above for the isodiffusion 
function for those wave vectors Q which lie in the region 
between the reciprocal-lattice points can be regarded 
only as a first approximation. As has been stated by 
Begbie (1947), the reason for using a model, which 
certainly is not a good picture of reality, is that  the 
method of next neighbours can be generalized; it can 
be used for all kinds of substances, and all kinds of 
symmetry. 

I wish to take this opportunity of expressing my 
gratitude to Prof. Born for suggesting this problem to 
me and for his advice during the progress of the work. 
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Observations have been made on the morphology of crystals of the Rochelle salt type, with particular 
reference to the effects of added impurities. Certain noteworthy changes of habit have been recorded. 
Measurements have also been made on the inductivities of about ninety specimens of these crystals, 
at room temperature, throughout the range of frequency from 650 to 2650 kcyc.sec. -1. 

While individual values were found not to vary at these frequencies, the inductivities showed a 
marked dependence on composition and on the presence of cupric ions, boric acid, or the ammonium 
radical. 

Introduction 

The crystals of the type of Rochelle salt, with whose 
inductivities this paper is concerned, may be considered 
as being derivatives of the original sodium potassium 
tartrate tetrahydrate (Rochelle salt), in which either 

t h e  relative amounts of sodium and potassium have 
been changed or one of these metals has been substituted 
by a new metallic radical. Crystals of each type were 
also grown with a habit-modifying addition in the 
solution. 


